Bull, B., Francis, R., Dunn, A., and Gilbert, D. 2002. CASAL (c++ algorithmic stock assessment laboratory): CASAL user manual v1.02.2002/10/21. NIWA Technical Report.
Deriso, R.B., II, T.J.Q., and Neal, P.R. 1985. Catch-age analysis with auxiliary information. Canadian Journal of Fisheries and Aquatic Sciences
42: 815–824. Canadian Science Publishing. doi:
10.1139/f85-104.
Fournier, D.A., Hampton, J., and Sibert, J.R. 1998. MULTIFAN-CL: A length-based, age-structured model for fisheries stock assessment, with application to south pacific albacore, thunnus alalunga. Canadian Journal of Fisheries and Aquatic Sciences 55(9): 2105–2116. NRC Research Press Ottawa, Canada.
Fournier, D., and Archibald, C.P. 1982. A general theory for analyzing catch at age data. Canadian Journal of Fisheries and Aquatic Sciences
39(8): 1195–1207. Canadian Science Publishing. doi:
10.1139/f82-157.
Fournier, D.A., Sibert, J.R., Majkowski, J., and Hampton, J. 1990. MULTIFAN a likelihood-based method for estimating growth parameters and age composition from multiple length frequency data sets illustrated using data for southern bluefin tuna (<i>thunnus maccoyii</i>). Canadian Journal of Fisheries and Aquatic Sciences
47: 301–317. Canadian Science Publishing. doi:
10.1139/f90-032.
Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., and Sibert, J. 2012.
AD model builder: Using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software
27(2): 233–249. Informa
UK Limited. doi:
10.1080/10556788.2011.597854.
Haddon, M. 2011. Modelling and quantitative methods in fisheries. Chapman; Hall/
CRC. doi:
10.1201/9781439894170.
Hilborn, R., and Walters, C.J. 1992. Quantitative fisheries stock assessment. Springer New York, NY. doi:
10.1007/978-1-4615-3598-0.
Magnusson, A., and Hilborn, R. 2007. What makes fisheries data informative? Fish and Fisheries
8: 337–358. Wiley. doi:
10.1111/j.1467-2979.2007.00258.x.
Methot, R. 2005. Technical description of the stock synthesis II assessment program. NOAA Fisheries.
Methot, R.D., and Wetzel, C.R. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fisheries Research
142: 86–99. Elsevier
BV. doi:
10.1016/j.fishres.2012.10.012.
Methot, R., and Low, L. 1990. Synthesis model: An adaptable framework for analysis of diverse stock assessment data. Proceedings of the Symposium on Applications of Stock Assessment Techniques to Gadids.
Nielsen, A., and Berg, C.W. 2014. Estimation of time-varying selectivity in stock assessments using state-space models. Fisheries Research
158: 96–101. Elsevier
BV. doi:
10.1016/j.fishres.2014.01.014.
Pedersen, M.W., and Berg, C.W. 2016. A stochastic surplus production model in continuous time. Fish and Fisheries
18(2): 226–243. Wiley. doi:
10.1111/faf.12174.
Punt, A.E., Thomson, R., Little, L.R., Bessell-Browne, P., Burch, P., and Bravington, M. 2024. Including close-kin mark-recapture data in statistical catch-at-age stock assessments and management strategies. Fisheries Research
276: 107057. Elsevier BV. doi:
10.1016/j.fishres.2024.107057.
Stock, B.C., and Miller, T.J. 2021. The woods hole assessment model (
WHAM): A general state-space assessment framework that incorporates time- and age-varying processes via random effects and links to environmental covariates. Fisheries Research
240: 105967. Elsevier
BV. doi:
10.1016/j.fishres.2021.105967.