

Accounting for spatiotemporal variability in somatic growth in age composition estimation for stock assessment models

<u>Giancarlo M. Correa</u>¹, Lorenzo Ciannelli¹, Lewis Barnett², Stan Kotwicki²

¹College of Earth, Ocean, and Atmospheric Sciences. Oregon State University. ²NMFS, Alaska Fisheries Science Center, NOAA.

Figure: NOAA Fisheries

Figure: NOAA Fisheries

Figure: NOAA Fisheries

Proportion of individuals in each age class:

Age compositions: what do they inform?

- Recruitment
- Mortality
- Somatic growth
- Selectivity

Recruitment

- Mortality
- Somatic growth
- Selectivity

- Recruitment
- Mortality
- Somatic growth
- Selectivity

- Recruitment
- Mortality
- Somatic growth
- Selectivity

- Recruitment
- Mortality
- Somatic growth
- Selectivity

 Introduction
 Objectives
 Methods
 Results
 Conclusions

 Age compositions: estimation

Usually, from scientific survey data (e.g. bottom-trawl survey, 376 stations):

 Introduction
 Objectives
 Methods
 Results
 Conclusions

 Age compositions: estimation

Usually, from scientific survey data (e.g. bottom-trawl survey, 376 stations):

Introduction	Objectives	Methods	Results	Conclusions
00000000				
Age comp	ositions: estin	nation		

ъ

Number of fish caught

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000000	00000	00
Age composit	ions: estimation	on		

Number of fish caught

Size sample

Number of fish caught

Size sample

Age sample

Introduction Objectives Methods Results Conclusions of Acro compositions: Acro longth log(ALK)

Age compositions: Age length key (ALK)

Using ALL age samples collected in a survey (or in many years):

Length (cm)	Age							
2 · · ·	1	2	3	4	5	6	7	8
10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00
17	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00
22	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00
23	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00
24	0.95	0.05	0.00	0.00	0.00	0.00	0.00	0.00
25	0.91	0.09	0.00	0.00	0.00	0.00	0.00	0.00
26	0.88	0.12	0.00	0.00	0.00	0.00	0.00	0.00
27	0.81	0.19	0.00	0.00	0.00	0.00	0.00	0.00
28	0.73	0.27	0.00	0.00	0.00	0.00	0.00	0.00
29	0.58	0.42	0.00	0.00	0.00	0.00	0.00	0.00
30	0.40	0.60	0.01	0.00	0.00	0.00	0.00	0.00

Introduction	Objectives	Methods	Results	Conclusions
0000000	O	000000	00000	00
Age composit	ions: estimatio	on		

- Abundance-at-age estimation
- Age sampling process

٠

- Abundance-at-age estimation
- Age sampling process

۰

Introduction	Objectives	Methods	Results	Conclusions
0000000●	O	000000	00000	00
Age composit	ions: estimatio	on		

- Abundance-at-age estimation
- Age sampling process

٠

Introduction	Objectives	Methods	Results	Conclusions
0000000●	O	000000	00000	00
Age composit	ions: estimation	on		

- Abundance-at-age estimation
- Age sampling process
- Age prediction in the size sample

Introduction	Objectives	Methods	Results	Conclusions
0000000●	O	000000	00000	00
Age composit	ions: estimation	on		

- Abundance-at-age estimation
- Age sampling process
- Age prediction in the size sample

- Abundance-at-age estimation
- Age sampling process
- Age prediction in the size sample

ALKs are widely used, however, their performance can be affected by variability in somatic growth

- Abundance-at-age estimation
- Age sampling process
- Age prediction in the size sample

ALKs are widely used, however, their performance can be affected by variability in somatic growth.

Introduction	Objectives	Methods	Results	Conclusions
00000000	•	0000000	00000	
Objectives				

- Evaluate the performance of classic ALKs and two statistical models to estimate age compositions of a fish population with a substantial spatiotemporal variability in somatic growth.
- Assess the effects of different age compositions estimated by ALKs or statistical models on stock assessment outputs uncertainties.

Introduction	Objectives	Methods	Results	Conclusions
00000000	•	0000000	00000	
Objectives				

- Evaluate the performance of classic ALKs and two statistical models to estimate age compositions of a fish population with a substantial spatiotemporal variability in somatic growth.
- Assess the effects of different age compositions estimated by ALKs or statistical models on stock assessment outputs uncertainties.

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	●000000	00000	00
Objectives				

- Evaluate the performance of classic ALKs and two statistical models to estimate age compositions of a fish population with a substantial spatiotemporal variability in somatic growth.
- Assess the effects of different age compositions estimated by ALKs or statistical models on stock assessment outputs uncertainties.

Introduction	Objectives	Methods	Results	Conclusions
00000000	0	o●ooooo	00000	00
Methods				

We simulate the dynamics of a fish population in time (40 years) and space. We use Pacific cod biological parameters in the eastern Bering Sea (EBS).

Introduction	Objectives	Methods	Results	Conclusions
00000000	0	o●ooooo	00000	00
Methods				

We simulate the dynamics of a fish population in time (40 years) and space. We use Pacific cod biological parameters in the eastern Bering Sea (EBS).

Introduction	Objectives	Methods 0000000	Results	Conclusions
Methods				

Why Pacific cod in the EBS?

Ciannelli et al., 2019

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	000●000	00000	00
Methods				

- No spatial / No temporal variability (No S / No T)
- Substantial / variability (S / T)

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	000●000	00000	00
Methods				

• No spatial / No temporal variability (No S / No T)

• Substantial / variability (S / T)

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	000●000	00000	
Methods				

- No spatial / No temporal variability (No S / No T)
- Substantial spatial / temporal variability (S / T)

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	000●000	00000	00
Methods				

- No spatial / No temporal variability (No S / No T)
- Substantial spatial / temporal variability (S / T)

Somatic growth is simulated using the classic von Bertalanffy equation:

$$L_t = L_{\infty}(1 - e^{-k^*(a-t_0)})$$

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	000●000	00000	
Methods				

- No spatial / No temporal variability (No S / No T)
- Substantial spatial / temporal variability (S / T)

Somatic growth is simulated using the classic von Bertalanffy equation:

$$L_t = L_{\infty} (1 - e^{-k^*(a - t_0)})$$
$$k^* = k + \frac{\omega_i}{\omega_i} + \epsilon_y$$

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	ooo●ooo	00000	00
Methods				

- No spatial / No temporal variability (No S / No T)
- Substantial spatial / temporal variability (S / T)

Somatic growth is simulated using the classic von Bertalanffy equation:

$$L_t = L_{\infty} (1 - e^{-k^*(a - t_0)})$$
$$k^* = k + \frac{\omega_i}{\omega_i} + \epsilon_y$$

Spatial field (ω_i) :

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000●00	00000	00
Methods				

- Design-based approaches:
 - Pooled ALK: combines information of many years. Helps to reduce data gaps.
 - Annual ALK: uses year-specific information.
- Model-based approaches (Puerta et al., 2018, Berg et al., 2012):
 - GAMs: $Age_{y,i} = \alpha_y + s_{1_y}(l_i) + s_{2_y}(lon_i, lat_i) + \epsilon_i$
 - CRLs¹: $\pi_{a,y,i} = \alpha_{a,y} + \beta_{a,y}l_i + s_{a,y}(lon_i, lat_i) + \epsilon_i$

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000●00	00000	00
Methods				

• Design-based approaches:

- Pooled ALK: combines information of many years. Helps to reduce data gaps.
- Annual ALK: uses year-specific information.
- Model-based approaches (Puerta et al., 2018, Berg et al., 2012):
 - GAMs: $Age_{y,i} = \alpha_y + s_{1_y}(l_i) + s_{2_y}(lon_i, lat_i) + \epsilon_i$
 - CRLs¹: $\pi_{a,y,i} = \alpha_{a,y} + \beta_{a,y}l_i + s_{a,y}(lon_i, lat_i) + \epsilon_i$

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000●00	00000	00
Methods				

- Design-based approaches:
 - Pooled ALK: combines information of many years. Helps to reduce data gaps.
 - Annual ALK: uses year-specific information.
- Model-based approaches (Puerta et al., 2018, Berg et al., 2012):
 - GAMs: $Age_{y,i} = \alpha_y + s_{1_y}(l_i) + s_{2_y}(lon_i, lat_i) + \epsilon_i$
 - CRLs¹: $\pi_{a,y,i} = \alpha_{a,y} + \beta_{a,y}l_i + s_{a,y}(lon_i, lat_i) + \epsilon_i$

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000●00	00000	00
Methods				

- Design-based approaches:
 - Pooled ALK: combines information of many years. Helps to reduce data gaps.
 - Annual ALK: uses year-specific information.
- Model-based approaches (Puerta et al., 2018, Berg et al., 2012):
 - GAMs: $Age_{y,i} = \alpha_y + s_{1_y}(l_i) + s_{2_y}(lon_i, lat_i) + \epsilon_i$
 - CRLs¹: $\pi_{a,y,i} = \alpha_{a,y} + \beta_{a,y}l_i + s_{a,y}(lon_i, lat_i) + \epsilon_i$

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000●00	00000	00
Methods				

- Design-based approaches:
 - Pooled ALK: combines information of many years. Helps to reduce data gaps.
 - Annual ALK: uses year-specific information.
- Model-based approaches (Puerta et al., 2018, Berg et al., 2012):
 - GAMs: $Age_{y,i} = \alpha_y + s_{1_y}(l_i) + s_{2_y}(lon_i, lat_i) + \epsilon_i$
 - CRLs¹: $\pi_{a,y,i} = \alpha_{a,y} + \beta_{a,y}l_i + s_{a,y}(lon_i, lat_i) + \epsilon_i$

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000●00	00000	
Methods				

- Design-based approaches:
 - Pooled ALK: combines information of many years. Helps to reduce data gaps.
 - Annual ALK: uses year-specific information.
- Model-based approaches (Puerta et al., 2018, Berg et al., 2012):

• GAMs:
$$Age_{y,i} = \alpha_y + s_{1_y}(l_i) + s_{2_y}(lon_i, lat_i) + \epsilon_i$$

• CRLs¹:
$$\pi_{a,y,i} = \alpha_{a,y} + \beta_{a,y}l_i + s_{a,y}(lon_i, lat_i) + \epsilon_i$$

$$\pi_a = P(Y = a | Y \ge a) = rac{p_a}{p_a + \ldots + p_A}$$

¹CRL: continuation ratio logits, GAM for estimation

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000●00	00000	00
Methods				

- Design-based approaches:
 - Pooled ALK: combines information of many years. Helps to reduce data gaps.
 - Annual ALK: uses year-specific information.
- Model-based approaches (Puerta et al., 2018, Berg et al., 2012):

• GAMs:
$$Age_{y,i} = \alpha_y + s_{1_y}(l_i) + s_{2_y}(lon_i, lat_i) + \epsilon_i$$

• CRLs¹:
$$\pi_{a,y,i} = \alpha_{a,y} + \beta_{a,y}l_i + s_{a,y}(lon_i, lat_i) + \epsilon_i$$

$$\pi_a = P(Y = a | Y \ge a) = rac{p_a}{p_a + \ldots + p_A}$$

We ran 250 replicates and compared performance of these methods.

¹CRL: continuation ratio logits, GAM for estimation

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	ooooooo	00000	
Objectives				

- Evaluate the performance of classic ALKs and two statistical models to estimate age compositions of a fish population with a substantial spatiotemporal variability in somatic growth.
- Assess the effects of different age compositions estimated by ALKs or statistical models on stock assessment outputs uncertainties.

00000000	0	0000000	00000	00
Methods				

We applied these four methods to real Pacific cod data in the EBS.

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	○○○○○○●	00000	
Methods				

We applied these four methods to real Pacific cod data in the EBS. Then, include these age compositions as input data.

Introduction	Objectives	Methods	Results	Conclusions
00000000	0	○○○○○○●	00000	00
Methods				

We applied these four methods to real Pacific cod data in the EBS. Then, include these age compositions as input data. Evaluate effects on outputs uncertainties (standard deviations).

MSE = measure of error. MRE = measure of bias.

Results: simulation experiment

8

8

Age

MSE = measure of error. MRE = measure of bias.

Results: simulation experiment

MSE = measure of error. MRE = measure of bias.

Introduction Objectives Methods Objectives O

Average of standard deviations of the entire time series.

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000000	0000●	
Results: stock	assessment			

Parameters influenced by age composition data:

Model name	L_∞	$Ln(R_0)$
pooled ALK	113.2 (13.2)	13.2 (0.29)
year ALK	109.8 (13.8)	12.96 (0.24)
GAM	106 (12.7)	12.8 (0.22)
CRL	110 (13.6)	12.94 (0.24)

Table: Estimated parameters: Mean (Sd)

Introduction	Objectives	Methods	Results	Conclusions
				•0
Conclusions				

• Somatic growth spatiotemporal variability impacts ALKs.

- Performance of alternative approaches has not been evaluated yet.
- Using a simulation experiment, we showed that these alternative approaches are more robust to estimate age compositions.
- Lower uncertainties in stock assessment models.
- Available for use for any species.

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000000	00000	●0
Conclusions				

- Somatic growth spatiotemporal variability impacts ALKs.
- Performance of alternative approaches has not been evaluated yet.
- Using a simulation experiment, we showed that these alternative approaches are more robust to estimate age compositions.
- Lower uncertainties in stock assessment models.
- Available for use for any species.

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000000	00000	●0
Conclusions				

- Somatic growth spatiotemporal variability impacts ALKs.
- Performance of alternative approaches has not been evaluated yet.
- Using a simulation experiment, we showed that these alternative approaches are more robust to estimate age compositions.
- Lower uncertainties in stock assessment models.
- Available for use for any species.

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000000	00000	●0
Conclusions				

- Somatic growth spatiotemporal variability impacts ALKs.
- Performance of alternative approaches has not been evaluated yet.
- Using a simulation experiment, we showed that these alternative approaches are more robust to estimate age compositions.
- Lower uncertainties in stock assessment models.
- Available for use for any species.

Introduction	Objectives	Methods	Results	Conclusions
00000000	O	0000000	00000	●0
Conclusions				

- Somatic growth spatiotemporal variability impacts ALKs.
- Performance of alternative approaches has not been evaluated yet.
- Using a simulation experiment, we showed that these alternative approaches are more robust to estimate age compositions.
- Lower uncertainties in stock assessment models.
- Available for use for any species.

Picture from ellaquaint