Oregon State University
College of Earth,Ocean, andAtmosphericSciences

Incorporating the impacts of climate variability on growth in fish population dynamics models

Giancarlo Helar Morón Correa
Ph.D. dissertation defense
Ocean, Earth, and Atmospheric Sciences - Ocean Ecology and Biogeochemistry
College of Earth, Ocean, and Atmospheric Sciences
Oregon State University

My Ph.D. journey

Pacific cod:

Ocean variability impacts on somatic growth

Peruvian anchovy:

- Population dynamics models
- Spatial dynamics
- Poor background in oceanography

Introduction

Fish life cycle

- Early life stages:
- Egg and larval stages
- Typically, the first year of life
- High mortality
- Modulates population abundance

Somatic growth

A trade-off between somatic growth and reproductive strategies:

1. Faster growth/No reproduction
2. Growth slows down/Maturation
3. Growth stops/Fully mature

Length-at-age data

Length increase with fish age

Cohort: Fish born during the same spawning event Age (a)
Not a single length per age
Growth may vary in time or space

Somatic growth variability

(a) Temperature:

- Warm environment: faster growth rates
- Cool environment: slower growth rates
(b) Fishery:
- No exploited: slower growth rates
- Exploited: faster growth rates
(c) Prey type:
- Low quality: slower growth rates
- High quality: faster growth rates

Other factors: genetics, density-dependence, or all of them!

Population biomass

Two ways to increase the population biomass:

1. Recruitment
2. Somatic growth

Somatic growth:

- Important driver of biomass variability (Stawitz et al. 2019)

Two ways to decrease the population biomass:

1. Fishing mortality
2. Natural mortality

Study the impacts of growth variability on fish populations?

Assuming a close fish population*:

Individual-based models (IBM)

In a few cases used to study the Input: oceanographic data

ID: N

- Development
- Growth
- Survival
- Prey capture
- Predation
- Movement

Main goal: study the early life stages of fishes and their interaction with the environment

Stock* assessment models (SAM)

POPULATION

NOAA Fisheries

Main goal: study the response of the entire fish population to harvest strategies

Eastern Bering Sea and Pacific cod

- Highly productive ecosystem
- Supports the most important U.S. fisheries Second most important: Pacific cod Support large fishing communities

Modeling the multiple action pathways of projected climate change on the Pacific cod (Gadus macrocephalus) early life stages

Giancarlo M. Correa, Thomas P. Hurst, William T. Stockhausen, Lorenzo Ciannelli, Trond Kristiansen, Darren J. Pilcher

In preparation

Eastern Bering Sea: future changes

Small-bodied copepods
Euphausiids

Decadal average change between 2010-2019 and 2090-2099 (RCP8.5)

Phytoplankton

... and other environmental variables

Objective

Investigate the direct and indirect impacts of future ocean conditions on the early life stages of the Pacific cod

Individual-based model (IBM)

3D input: Bering10K
(2010-2100)

- Input: RCP4.5 and RCP8.5 emission scenarios
- Eggs released from spawning (initial) locations
- Fish features (e.g., weight, length) updated every hour

Individual-based model

Growth:

- Temperature and food-dependent (except when the yolk sac was still present)

Foraging component:

- Perception
- Approach
- Attack
- Ingestion

Fiksen and MacKenzie (2002)
Growth rate $\sim \mathrm{f}(\mathrm{T}$, food in stomach $)$

Food in stomach \sim f(prey density, prey length, larval size, light)

Individual-based model

Survival probability:

- Mortality by visual predators
- f(larval size, light)
- Predator density assumed constant
\square Mortality by invertebrates - f(larval size)
- Mortality by periods of starvation
- Constant added for time step t when the stomach was empty

Individual-based model

Indices of recruitment:

- Estimated from hatch success (HS):

$$
\sum_{k} H S_{k} \quad k=\text { fish }
$$

HS $\sim \mathrm{f}$ (Temperature)
Laurel and Rogers et al. (2020)

- Estimated from survival probability $\left(P_{s}\right)$:

$$
\sum_{k} P_{s_{k}}
$$

- Estimated from HS and P_{s} :

$$
\sum_{k} H S_{k} P_{s_{k}}
$$

Individual-based model

Dead fish:

1. Reached the point-of-no-return (PNR)

- Critical to pass from the YSL to FDL

Yonathon Zohar
2. Starvation

- Poor body condition

3. Advected out of the EBS

Impacts of ocean acidification

From laboratory studies in
Pacific cod and other gadids in similar ecosystems:

1. Growth (direct)
2. Metabolism (direct)
3. Probability of preycapture success (direct)
4. Prey abundance (indirect)
5. Prey weight (indirect)

Results: cod habitat

Temperature increase:

- Regime 1: 2010-2040
- Regime 2: 2041-2075
- Regime 3: 2076-2100

Prey density:

Average environmental conditions throughout the fish's lifespan

Results: cod ecology

Results: recruitment

- HS (hatch success) negatively correlated with recruitment estimates from SAM (2010-2021)
- P_{s} agreed with periods of low and high recruitment during 2010-2021
- Potential decrease in recruitment in future years as found for walleye pollock (Mueter et al., 2011)

Results: dead cod

- Proportion that reached PNR and starved closely related
- Proportion that starved well correlated (negatively) with recruitment estimates:
- Warmer years \rightarrow higher deaths by starvation
- Death by advection was constant over time

RCP8.5
RCP4.5

Results: cod spatial distribution

- Retention area in the southeastern Bering Sea
- Bering Slope Current important for advection of fish northward

2

Final locations (by Oct $1^{\text {stt }}$)

Results: ocean acidification impacts

Conclusions

- Model outputs agreed with the current knowledge of the ecology of Pacific cod early life stages
- Impacts only observed for the RCP8.5 emission scenario
- Increase in hatch success and larval size in the future
- Decrease in survival probability and recruitment in the future
- Starvation as the most important driver of survival probability and recruitment
- Early life stages not impacted by ocean acidification under our assumptions

Improved estimation of age composition by accounting for spatiotemporal variability in somatic growth

Giancarlo M. Correa, Lorenzo Ciannelli, Lewis A.K. Barnett, Stan Kotwicki, Claudio Fuentes

Canadian Journal of Fisheries and Aquatic Sciences (2020)

Age composition: definition

Age composition: estimation

Estimated from fishery-dependent or independent sources.
Bottom-trawl survey in the eastern Bering Sea (once a year)

- 376 sampling stations
- Bottom-trawl net
- Study groundfishes

Age composition: estimation

At each station:

Station catch
Numbers-at-length

Length subsample

Otoliths

Age sampling strategy

Age subsample

Age-length keys (ALK)

Construction from length and age information in the age subsample from all stations

Age composition: estimation

Using information from all stations, estimate age composition for the entire area.

At each station:

Age-length key (ALK)

- Simple construction
- Used worldwide
- Needs a large amount of data
- Normally pools data from the entire study area
- In some cases, pools data from different years/surveys

Alternative approaches to ALK?

- Puerta et al. (2018): used a generalized additive model (GAM):

At a given year (using information in the age subsample):

$$
g\left[\mathbb{E}\left(a_{j}\right)\right]=\alpha+s_{1}\left(l_{j}\right)+s_{2}\left(\text { lon }_{j}, \text { lat }_{j}\right)+\varepsilon_{j}
$$

Predict age in the length subsample:
g is the log-link function
a_{j} is the age of the sampled fish j in the age subsample
l_{j} is the length of the sampled fish j in the age subsample $l o n_{j}, l a t_{j}$ is the spatial location where the j fish was sampled ε_{j} is the error term

	location		size	age				
\mathbf{j}	lon	lat	l	a				
1	-170	58	35	2				
2	-175	55	49	3				
\ldots	\ldots	\ldots	\ldots	\ldots				
N	-173	60	68	7				

Alternative approaches to ALK?

- Berg et al. (2012): used continuation ratio logits (CRL) and GAM for estimation:
At a given year (using information in the age subsample):

$$
g\left[\mathbb{E}\left(\pi_{a, j}\right)\right]=\alpha_{a}+\beta_{a} l_{j}+s_{a}\left(\text { lon }_{j}, \text { lat }_{j}\right)+\varepsilon_{a, j}
$$

g is the logit-link function
$\pi_{a, j}$ is the conditional probability of a fish of being age a given that it is at least that age:

$$
\pi_{a}=P(Y=a \mid Y \geq a)=\frac{p_{a}}{p_{a}+\cdots+p_{A^{*}}}
$$

Then, the unconditional probabilities at age are estimated:

$$
\tilde{p}_{J}=\hat{\pi}_{J}
$$

$$
\tilde{p}_{a}=\hat{\pi}_{a} \prod_{j=j}^{a-1}\left(1-\hat{\pi}_{j}\right), \quad a>J
$$

Predict prop-at-age in the length subsample: location							size
Prop-at-age							

Objective

Evaluate the performance of classic age-length keys (design-based) and two alternative approaches
(model-based) to estimate age compositions of a fish population with spatial and temporal variability in somatic growth

Simulation experiment

- Population dynamics of a Pacific cod-like species (1994-2016)
- A survey per year
- Station catch
- Length subsample
- Age subsample
- Age composition estimates per survey

Spatial and temporal variability in somatic growth

Two somatic growth scenarios:

- No spatial / No temporal (No S / No T)
- Spatial / Temporal (S / T)

$$
L_{a}=L_{\infty}\left(1-e^{-k^{*}\left(a-t_{0}\right)}\right)
$$

$$
\begin{gathered}
\text { No } \mathrm{S} / \mathrm{No} \mathrm{~T}: \\
k^{*}=k
\end{gathered}
$$

Spatial variability:

$$
\begin{gathered}
\mathrm{S} / \mathrm{T}: \\
k^{*}=k+\omega_{i}+\epsilon_{y}
\end{gathered}
$$

Temporal variability:

Performance of four methods

Using the information in the age subsample from the simulated survey:

1. Pooled age-length key (pooled ALK): information pooled over space and years \rightarrow unique ALK.
2. Annual age-length key (annual ALK): information pooled over space \rightarrow unique ALK per year 3. Generalized Additive Models (GAMI): Puerta's approach. Age is the response variable.
3. Continuation Ratio Logits (CRL): Berg's approach. Proportion-at-age is the response variable.

Comparing age composition estimates using these methods with the true age composition in the population

Age compositions in stock assessment models

$A+B+C=$
 Stock Assessment

Abundance Biological Data

Age composition is an informative input to stock assessment models:

- Recruitment
- Mortality
- Somatic growth

Using survey data of Pacific cod in the eastern Bering Sea (1994 - 2016):

1. Estimate age compositions using the four evaluated approaches
2. Include these age compositions in the Pacific cod stock assessment model separately
3. Compare data consistency among stock assessment models

Results: simulation experiment

Results: simulation experiment

Indicators per age:

Large negative bias for older ages (too many data gaps!)

Best performance: CRL

Results: performance in stock assessment model

Age compositions in stock assessment models:

Component	SS pooled ALK	SS annual ALK	SS GAM	SS CRL
Total	92.53	75.18	88.96	72.93
Catch	$5.9 \mathrm{e}-13$	$0.0105 \mathrm{e}-13$	$0.06 \mathrm{e}-13$	$0.35 \mathrm{e}-13$
Equilibrium catch	$11.4 \mathrm{e}-05$	$6.3 \mathrm{e}-05$	$9.6 \mathrm{e}-05$	$6.8 \mathrm{e}-05$
Survey	-29.7	-40.7	-40.05	-40.15
Length composition	74.27	72.1	72.66	71.77
Age composition	76.32	61.83	71.26	59.43
Recruitment	-29.23	-19.03	-16.08	-19.09

[^0]
Conclusions

- CRL approach was the most robust method to estimate age compositions
- Pooled ALK was the worst method
- Annual ALK was affected by data gaps in older ages
- Evidence that the CRL approach might improve data consistency and fit in stock assessment models

Spatial and temporal variability in somatic growth in fisheries stock assessment models: evaluating the consequences of misspecification

Giancarlo M. Correa, Carey McGilliard, Lorenzo Ciannelli, Claudio Fuentes

ICES Journal of Marine Sciences (2021)

Spatial structure in stock assessment models

Is there evidence of spatial structure in the stock?

Objective

Evaluate the consequences of misspecification in somatic growth in stock assessment models

- Spatial and temporal variability
- Three life-histories: sardine - cod - rockfish

In the population

What we assume in the stock assessment model

Simulation experiments in stock assessment models

Scenario 1:

Compare EM estimates vs true (OM)

- Simulation-estimation process
- Different 'realities' can be simulated
- Used for different purposes:
- Movement
- Recruitment
- Natural mortality
- Data quantity and quality
- Somatic growth

Somatic growth variability simulation

Operating model (OM, in the population)

Year-specific:

Somatic growth variability simulation

Operating model (OM, in the population)

Somatic growth variability estimation

Estimation model (EM, what we assume in the SAM)

When OM simulates temporal variability, EM:

- Constant: Assumes k or L_{∞} constant over time
- Env index: Includes an ‘observed’ environmental index $\left(e n v_{o b s}\right)$
- Deviates: Estimates deviates for k or L_{∞} per year or cohort

Somatic growth variability estimation

Estimation model (EM, what we assume in the SAM)
When OM simulates spatial variability, EM:

Aggregated approach

$\underbrace{\text { Aggregate }}$

Data
aggregated used in EM

1 fishery
1 survey

Areas-as-fleets approach

Spatially explicit approach

2 fisheries
2 surveys

1 fishery
1 survey
1 survey

Results: Spatial variability

- 100 replicates per scenario
- Relative error (a measure of bias) of spawning biomass over time

OM:

- No spatial variability in somatic growth included.
- Good performance when F equally distributed between areas
- Spatially-explicit models always had a good performance
- Bad performance of models that ignored spatial structure.

Year

Results: Spatial variability

OM:

- Spatial variability in somatic growth included.
- Spatially-explicit models also had the best performance
- Growth variability by itself did not produce large impacts
- Main result: growth spatial variability worsened approaches that ignored spatial structure

OM EM

Results: Temporal variability

OM:

- Temporal variability in size-at-age.
- Ignoring temporal variability in growth led to years with under or overestimation.
- Some species were not affected by varying growth parameters.
- Estimating deviates showed the best performance.

Conclusions

- Spatial variability in somatic growth:
- Approaches that ignored spatial structure \rightarrow bad performance.
- Spatially-explicit approach \rightarrow best performance.
- Only variability in growth may not produce bias in SSB.
- Important to consider in SAM when variability in F also present.
- Temporal variability in somatic growth:
- Ignoring either year or cohort-specific variability might produce bias in SSB estimates.
- Including an environmental index or estimating deviates produced unbiased SSB estimates.

Conclusions

General conclusions

Somatic growth variability is present throughout the fish's lifespan.

Statistical models: useful to improve the estimation of age compositions (important input to SAM) when variability in somatic

Acknowledgements

My family:

Paola, Rosa, Andreana, Lesly, Helar, Maja, Leo, Ander, and my new family!

Academic support:
Lorenzo Ciannelli Grant Thompson Stan Kotwicki Lewis A.K. Barnett Carey McGilliard Claudio Fuentes Trond Kristiansen Thomas Hurst William Stockhausen Darren Pilcher and professors in CEOAS

Funding support:

Oregon State University College of Earth,Ocean, and Atmospheric Sciences FISHERIES

Thank you! Questions?

Contact: moroncog@oregonstate.edu

My Ph.D. journey:

[^0]: Best data consistency using CRL method

