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Outline

- Somatic growth 1n fish populations

1. Impacts of temporal and spatial variability in
somatic growth rates on age composition
estimation

2. Consequences of somatic growth
misspecification on stock assessment outcomes

- Conclusions



Populations dynamics

Exploited closed population:

Deaths Recrmtment

Somatlc rowth
Catch -
Biomass




Somatic growth

Increase 1n size and/or mass

¥ )
e

([
e

<iee

Time

p




Somatic growth E

Trade-off between

reproduction and growth: )
2
= — Cumulative
« Faster growth in younger g oo Rate
m
ages , ‘
 Energy al}oca.ted In D 5 A
reproduction in older ages =
£
o
. @
Growth rate can vary in 2
. =3
space and time. 8
g
Age

Morais and Bellwood (2020)



Somatic growth variability

Factors that vary somatic growth rates:

1. Environment
 Temperature
 Food quality and concentration
2. Predators
3. Fishery
4. Density-dependence
5. Genetics



Somatic growth variability
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Somatic growth: why 1s important?

Petrale sole Canary rockfish P. cod P. hake
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1. Impacts of temporal
and spatial variability
In somatic growth on
age composition
estimation




Age composltion estimation

Age compositions:

Proportions-at-age

Proportions
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Age composltion estimation

Otoliths

g

Age sampling «
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This process is repeated for all hauls




Age composltion estimation

Age-length key (ALK) construction from information in the age subsample
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Age composltion estimation

Expand to the survey area:

* Design-based
* Model-based
Age assignment
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Age composltion estimation

Impacted by three main factors:

1.Age sampling strategy

2.Age assignment 1n the length
subsample

3.Catch-at-age expansion to the entire
survey area



Age-length key

* Simple construction

* Used worldwide

* Needs good amount of data

* INormally pools data from

the entire study area

* Data gaps for some
lengths

* In some cases, pools data
from different times
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Pacific cod 1in the eastern Bering Sea
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Variability in size-at-age

At a given location:

Normal growth
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Spatial variation in somatic growth
1mpacts age-length keys
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Age-length key

* Simple construction

* Used worldwide

* Needs good amount of data

* Normally pools data from
the entire study area

* Data gaps for some
lengths

| In some cases, pools data

from different times
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Temporal variation in somatic growth

1mpacts age-length keys
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Alternative approaches to ALK?

* Puerta et al. (2018): used a generalized additive model
(GAM):

At a given year:
glE(a;)] = a + Sl(lj) + 55 (lonj, latj) + &

g 1s the log-link function

a; 1s the age of the sampled individual j in the age subsample

l; 1s the length of the sampled individual j in the age subsample
lon;, lat; 1s the spatial location where the j individual was sampled
g 1s the error term

The response variable 1s age (discrete)



Alternative approaches to ALK?

* Berg et al. (2012): used continuation ratio logits (CRL)
and GAM for estimation:

At a given year:
g[IE(T[a’j)] = U, + ,Balj + Sa(lon]-, l(ltj) + Ea,j

g 1s the logit-link function
g j 1s the conditional probability of a fish of being age a given that it 1s at least that age:

Pa
n, =P =alyY =>a)=
Pa+ -+ Da
- . ) A* is the maximum estimable age
Then, the unconditional probabilities at age are estimated: ] is the minimum estimable age
py =1 P = [1957 (A= 1), a>]

The response variable 1s proportions-at-age



Objectives

Evaluate the performance of classic age-length keys
(design-based) and two alternative approaches
(model-based) to estimate age compositions of a fish
population with spatial and temporal variability in
somatic growth

Evaluate how age compositions estimated using different approaches
perform 1n a stock assessment model



Simulation experiment

« Spatial and temporal population dynamics of a
Pacific cod-like species

* A survey per year (Bottom-trawl survey-like)
« Haul catches
* Length subsamples
* Age subsamples
« Age composition estimates per survey
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Spatial and temporal variability in somatic
orowth

Two somatic growth scenarios:

* No spatial / No temporal (No S/ No T)
« Spatial / Temporal (S/T)

Ly = Lo (1 — e7¥ (@7t0))
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Degree of overlap 1n size-at-age

At a given location:
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Age assignment

1. Pooled age-length key (pooled ALK): length and
age information from different years is combined to
construct a single ALK.

2. Annual age-length key (annual ALK): uses year-
specific length and age information to construct ALKSs.

3. Generalized Additive Models (GAM): 1s the
Puerta’s approach. Age 1s the response variable.

4. Continuation Ratio Logits (CRL): is the Berg’s
approach. Proportion-at-age 1s the response variable.



Age assignment

a-b) Pooled or annual ALK

Length subsample Age assignment Abundance-at-age estimation
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Age assignment

Correa et al. (2020)
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Age compositions 1n stock assessment
models

Using survey data of Pacific cod
1n the eastern Bering Sea (1994
- 2016):

1. Estimate age compositions
using the four evaluated
approaches

2. Include these age
compositions in the Pacific
cod stock assessment model
separately

3. Compare consistency among
data inputs in the stock
assessment model

Age compositions are an
informative input to stock
assessment models:
 Recruitment
 Mortality

* Somatic growth

* Selectivity



Results

High-o, case:
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Results

High-o, case, indicators per age:
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Results

High-o, case, indicators per period:
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Results

Low-o, case:
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Results

Age compositions in stock assessment models:
* Look at likelihood components

Component SS pooled ALK SS annual ALK SS GAM SS CRL
Total 92.53 75.18 88.96 72.93
Catch 5.9e-13 0.0105e-13 0.06e-13 0.35e-13
Equilibrium catch 11.4e-05 6.3e-05 9.6e-05 6.8e-05
survey —-29.7 -40.7 -40.05 -40.15
Length composition 74.27 72.1 72.66 71.77
Age composition 76.32 61.83 71.26 59.43
Recruitment -29.23 -19.03 -16.08 -19.09

Correa et al. (2020)



Conclusions

 CRL approach was the most robust method to
estimate age compositions

* Pooled ALK was the worst method

 Annual ALK was affected by data gaps in
older ages

 GAM approach highly affected by the degree
of overlap in size-at-age across ages

» Evidence that CRL approach might improve
data consistency and fit in stock assessment
models

https://github.com/gmoroncorrea/STageCompsEstimation



2. Consequences of
somatic growth
misspecification on
stock assessment
outcomes




Stock assessment models

Stock assessment: process of collecting and analyzing biological
and statistical information to determine the changes in the
abundance of fisheries stocks in response to fishing and to

predict future trends of stock abundance.

Data:

 (Catch
« Abundance indices

Fisheries management

10

* Length compositions |:>
« Age compositions
 Environmental indices

Stock assessment

model:

* Population model
Parameters: * Observation model
 Mortality E:> « Statistical model

* Somatic growth

Stock assessment
outcomes:

 Biomass estimates

« Parameter estimates
* Stock status

* Reference points

* Stock-recruitment
« Selectivity
 Fecundity




Growth 1n stock assessment models
L, =Ly + (Lmin _ Loo)exp(_k(a — al)) L.,

Mean size

(La)

a, Age (a)

Growth parameters should be assumed constant in space and time?



Spatial structure 1n stock assessment models

Is there evidence of spatial structure in the stock?
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Berger et al. (2017)




Spatial structure 1n stock assessment models

A. Panmictic Spatial Heterogeneity
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Modeling the spatial structure of a stock
1s a complex process.

In general:

» Spatially explicit models improve
model outcomes.

 Becoming popular when data permit.

Challenges (Punt et al. 2019):

* Lack of data

» Lack of biological information
(movement data!)

» Political boundaries # biological
boundaries

 Computational demands

Goethel and Berger et al. (2019)



Simulation experiments in stock assessment

models

Scenario 1:

(oM, |

o

EM,
[ OM,, ][ EM, Compare
: : estimated
vs true (RE)
. oM, J[ EM,
Scenario 2:
(T om, ) _mm,
[ OM, ] [ EM, Compare
: : estimated
vs true (RE)
L oM, J[ EM,

)

Scenario k:

Operating model
(OM):
Simulate the true
dynamics of a

\_ population AN

Estimation model
(EM):
Assumption about
the population
dynamics
| /

 Simulation-estimation process
» Different ‘realities’ can be simulated
» Used for different purposes:

e Movement
* Recruitment
« Natural mortality

 Data quantity and quality

* Somatic growth



Relative error in SSB

Spatial variability in somatic growth

Ignore spatial variability in somatic growth: Include spatial variability in somatic growth:
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Using parameters from pink ling (Genypterus blacodes) in Australia
and a simulation experiment:

» Ignoring spatial structure: more biased estimates but precise
» Considering spatial structure (i.e., spatially explicit model):

unbiased estimates

Punt et al. (2015)



Temporal variability in somatic growth
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Using parameters from splitnose rockfish (Sebastes diploproa), they

=
-

0.5

1.0

0.5

05 00

-1.0

-10 05 00

(i) OM 2 weakly
|climate-driven

(i) OM 3 highly
autocorrelated

(iv) OM 5 strongly
imate-driven

(i) OM 2 weakly
|climate-driven

1900 1940 1980

1900 1940 1980

simulated temporal variability in somatic growth:

« Highly biased SSB estimates when EM was misspecified
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Lee et al. (2018)



Temporal variability in somatic growth
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Using parameters petrale sole (Fopsetta

jordant) 1n the California Current, they

simulated temporal variability in somatic

growth (deviates and regime-like):

« Data poor vs data rich: data rich
scenarios were more precise.

 Unbiased estimates when EM
accounted for temporal variability

Stawitz et al. (2019)



Sardine (Sardinops sagax)
Cod (Gadus macrocephalus)

Obj eCtive S Rockfish (Sebastes diploproa)

What if the stock has a substantial spatial and
temporal variability in somatic growth but we 1gnored
them?

Evaluate the consequences of misspecification in
somatic growth in stock assessment models

* Spatial and temporal variability

* Three life-histories: sardine — cod — rockfish

Simulation experiment using ss3sim (Anderson et al. 2014)



Somatic growth variability stmulation
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Somatic growth variability stmulation

Operating model (OM)
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Somatic growth variability stmulation

Operating model (OM)

Simulated changes in mean size-at-age by varying the k parameter (based on literature):
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Somatic growth variability stmulation

Operating model (OM)

Simulated changes in mean size-at-age by varying the L, parameter (based on literature):
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Somatic growth variability estimation
Estimation model (EM)

When OM simulates temporal variability, EM:
e Assumes k and L., constant over time
* Includes an ‘observed’ environmental index (env,;;)

When OM simulates spatial variability, EM:

« Aggregated: Assumes k and L, constant over space.
Data generated by the OM 1s aggregated.

* Spatially explicit: Two-area model, k and L., are
estimated by area.

* Areas-as-fleet: Like aggregated approach, but data is not
aggregated.



Somatic growth variability estimation
Estimation model (EM)

Aggregated approach Spatially explicit approach Areas-as-fleets approach
1 fishery 1 fishery 1 fishery 1 fishery 1 fishery 1 fishery
1 survey 1 survey 1 survey 1 survey 1 survey 1 survey
Data Data Data Data Data Data
generated by generated by generated by generated by generated by generated by
OM OM OM OM OM OM
Area 1 Area 2 Area 1 Area 2 Area 1 Area 2
| Aggregate | ‘ ‘ | |
| |
Data Data used in Data used 1n .
Data used in
aggregated EM EM M
used i1n EM Area 1 Area 2
1 fishery 1 fishery 1 fishery 2 fisheries

1 survey 1 survey 1 survey 2 surveys



Results: Spatial variability
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Results: Spatial variability

Areas-as-fleets
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Results: Spatial variability
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Results: Temporal variability
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Results: Temporal variability e
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Results: Temporal variability

OM:

Temporal variability
(cohort-specific) in
mean size-at-age by
varying k over time
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Conclusions

» Spatial variability in somatic growth:
« Aggregated approach OK
» Areas-as-fleet was the worst approach
« Spatially explicit reported unbiased estimates
 Temporal variability in somatic growth:
* Ignoring either year or cohort-specific variability
produced biased SSB estimates
* Including an environmental index produced
unbiased SSB estimates

https://github.com/gmoroncorrea/spatiotemporal_growth



Caveats

 No movement assumed

* True values of parameters
known

* Fishing mortality assumed
equal for both areas (Spoiler:
1t worsened the aggregated
and areas-as-fleets approach)

 Boundaries between slow and

fast-growing areas known
(Detection: Kapur et al. 2020)

Warm ocean

Cool ocean

Figure from Aaron Berger’s presentation



General conclusions

* Somatic growth 1s an important aspect of the
population dynamics of a stock

It contributes significantly to the variability in
biomass in some cases

 Its variability affects the estimation of some
data inputs used 1n stock assessment models

* Ignoring variability in somatic growth might
lead to biased stock assessment outcomes
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