
Impacts of temporal and 
spatial variability in 
somatic growth on fish 
stock assessment models

Giancarlo M. Correa
Fisheries Oceanography Lab
College of Earth, Ocean, and Atmospheric Sciences
Oregon State University

Quantitative Seminar Series



Outline

•Somatic growth in fish populations
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Somatic growth

Morais and Bellwood (2020)

Trade-off between 

reproduction and growth:

• Faster growth in younger 

ages

• Energy allocated in 

reproduction in older ages

Growth rate can vary in 

space and time.



Somatic growth variability

Factors that vary somatic growth rates:

1. Environment

• Temperature

• Food quality and concentration

2. Predators

3. Fishery

4. Density-dependence

5. Genetics



Somatic growth variability

Wilson et al. (2019)



Somatic growth: why is important?

Growth, as recruitment, can drive 

the variability in stock spawning 

biomass.

Stawitz and Essington (2018)



1. Impacts of temporal 
and spatial variability 
in somatic growth on 
age composition 
estimation



Age composition estimation

Age compositions:
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Age composition estimation

Estimated from the fishery or a survey:

NOAA

Let’s focus on a station



Age composition estimation

Haul catch Length subsample Age subsample

This process is repeated for all hauls

Otoliths

Age sampling

strategy

Catch-at-length



Age composition estimation

Age-length key (ALK) construction from information in the age subsample



Age composition estimation

Haul catch

Catch-at-length 
Age subsample

Age assignment

Length subsample

Expand to the survey area:

• Design-based

• Model-based

Catch-at-age



Age composition estimation

Age composition for the entire survey area

NOAA



Age composition estimation

Impacted by three main factors:

1.Age sampling strategy

2.Age assignment in the length 

subsample 

3.Catch-at-age expansion to the entire 

survey area



Age-length key

• Simple construction

• Used worldwide

• Needs good amount of data

• Normally pools data from 

the entire study area

• Data gaps for some 

lengths

• In some cases, pools data 

from different times



Pacific cod in the eastern Bering Sea

Ciannelli et al. (2019)

Slow-growing

Fast-growing



Variability in size-at-age 

Correa et al. (2020)

At a given location:

At the population:



Spatial variation in somatic growth 
impacts age-length keys



Age-length key

• Simple construction

• Used worldwide

• Needs good amount of data

• Normally pools data from 

the entire study area

• Data gaps for some 

lengths

• In some cases, pools data 

from different times



Temporal variation in somatic growth 
impacts age-length keys

Combine information

from periods with

different somatic growth

rates



Alternative approaches to ALK?

• Puerta et al. (2018): used a generalized additive model 

(GAM):

𝑔[𝔼(𝑎𝑗)] = 𝛼 + 𝑠1 𝑙𝑗 + 𝑠2 𝑙𝑜𝑛𝑗 , 𝑙𝑎𝑡𝑗 + 𝜀𝑗

At a given year:

𝑔 is the log-link function

𝑎𝑗 is the age of the sampled individual 𝑗 in the age subsample

𝑙𝑗 is the length of the sampled individual 𝑗 in the age subsample

𝑙𝑜𝑛𝑗 , 𝑙𝑎𝑡𝑗 is the spatial location where the 𝑗 individual was sampled

𝜀𝑗 is the error term

The response variable is age (discrete)



Alternative approaches to ALK?

• Berg et al. (2012): used continuation ratio logits (CRL) 

and GAM for estimation:

𝑔[𝔼(𝜋𝑎,𝑗)] = 𝛼𝑎 + 𝛽𝑎𝑙𝑗 + 𝑠𝑎 𝑙𝑜𝑛𝑗 , 𝑙𝑎𝑡𝑗 + 𝜀𝑎,𝑗

At a given year:

𝑔 is the logit-link function

𝜋𝑎,𝑗 is the conditional probability of a fish of being age 𝑎 given that it is at least that age:

The response variable is proportions-at-age

𝜋𝑎 = 𝑃 𝑌 = 𝑎 𝑌 ≥ 𝑎 =
𝑝𝑎

𝑝𝑎 +⋯+ 𝑝𝐴∗

෤𝑝𝐽 = ො𝜋𝐽 ෤𝑝𝑎 = ො𝜋𝑎ς𝑗=𝐽
𝑎−1(1 − ො𝜋𝑗) , 𝑎 > 𝐽

Then, the unconditional probabilities at age are estimated:
𝐴∗ is the maximum estimable age

𝐽 is the minimum estimable age



Objectives

Evaluate the performance of classic age-length keys 

(design-based) and two alternative approaches 

(model-based) to estimate age compositions of a fish 

population with spatial and temporal variability in 

somatic growth

Evaluate how age compositions estimated using different approaches 

perform in a stock assessment model



Simulation experiment
• Spatial and temporal population dynamics of a 

Pacific cod-like species

• A survey per year (Bottom-trawl survey-like)

• Haul catches

• Length subsamples

• Age subsamples

• Age composition estimates per survey



Spatial and temporal variability in somatic 
growth
Two somatic growth scenarios:

• No spatial / No temporal (No S / No T)

• Spatial / Temporal (S / T)

𝐿𝑎 = 𝐿∞(1 − 𝑒−𝑘
∗(𝑎−𝑡0))

𝑘∗ = 𝑘 + 𝜔𝑖 + 𝜖𝑦

No S / No T:

𝑘∗ = 𝑘

S / T:

Years

Spatial variability: Temporal variability:

𝝎𝒊

𝝐𝒚



Degree of overlap in size-at-age

Correa et al. (2020) 𝜎𝑎 = Variance of size-at-age

At a given location:



Age assignment

1. Pooled age-length key (pooled ALK): length and 

age information from different years is combined to 

construct a single ALK. 

2. Annual age-length key (annual ALK): uses year-

specific length and age information to construct ALKs.

3. Generalized Additive Models (GAM): is the 

Puerta’s approach. Age is the response variable.

4. Continuation Ratio Logits (CRL): is the Berg’s 

approach. Proportion-at-age is the response variable.



Age assignment

Correa et al. (2020)



Age assignment

Correa et al. (2020)



Age compositions in stock assessment 
models

Age compositions are an 

informative input to stock 

assessment models:

• Recruitment

• Mortality

• Somatic growth

• Selectivity

Using survey data of Pacific cod 

in the eastern Bering Sea (1994 

- 2016):

1. Estimate age compositions 

using the four evaluated 

approaches

2. Include these age 

compositions in the Pacific 

cod stock assessment model 

separately

3. Compare consistency among 

data inputs in the stock 

assessment model



Results

Correa et al. (2020)

High-𝜎𝑎 case:

MSE: Measure of error

MRE: Measure of bias



Results

Correa et al. (2020)

High-𝜎𝑎 case, indicators per age:

MSE: Measure of error

MRE: Measure of bias



Results

Correa et al. (2020)

High-𝜎𝑎 case, indicators per period:

MSE: Measure of error

MRE: Measure of bias



Results

Correa et al. (2020)

Low-𝜎𝑎 case:

MSE: Measure of error

MRE: Measure of bias



Results

Correa et al. (2020)

Age compositions in stock assessment models:

• Look at likelihood components



Conclusions

• CRL approach was the most robust method to 

estimate age compositions

• Pooled ALK was the worst method

• Annual ALK was affected by data gaps in 

older ages

• GAM approach highly affected by the degree 

of overlap in size-at-age across ages

• Evidence that CRL approach might improve 

data consistency and fit in stock assessment 

models

https://github.com/gmoroncorrea/STageCompsEstimation



2. Consequences of 
somatic growth 
misspecification on 
stock assessment 
outcomes



Stock assessment models

Stock assessment: process of collecting and analyzing biological 

and statistical information to determine the changes in the 

abundance of fisheries stocks in response to fishing and to 

predict future trends of stock abundance.

Data: 

• Catch

• Abundance indices

• Length compositions

• Age compositions

• Environmental indices

Parameters: 

• Mortality

• Somatic growth

• Stock-recruitment

• Selectivity

• Fecundity

Stock assessment 

model:

• Population model

• Observation model

• Statistical model

Stock assessment 

outcomes:

• Biomass estimates

• Parameter estimates

• Stock status

• Reference points

Fisheries management



Growth in stock assessment models

Mean size

(𝐿𝑎)

Age (𝑎)

𝐿𝑎 = 𝐿∞ + (𝐿𝑚𝑖𝑛 − 𝐿∞)exp(−𝑘 𝑎 − 𝑎1 ) 𝐿∞

𝐿𝑚𝑖𝑛

𝑎1

Growth parameters should be assumed constant in space and time?



Spatial structure in stock assessment models

Berger et al. (2017)



Spatial structure in stock assessment models

Goethel and Berger et al. (2019)

Modeling the spatial structure of a stock 

is a complex process.

In general:

• Spatially explicit models improve 

model outcomes.

• Becoming popular when data permit.

Challenges (Punt et al. 2019):

• Lack of data

• Lack of biological information 

(movement data!)

• Political boundaries ≠ biological 

boundaries

• Computational demands



Simulation experiments in stock assessment 
models

Compare                                                                  

estimated 

vs true (RE)

…                   …

Operating model 

(OM):

Simulate the true 

dynamics of a 

population

Estimation  model 

(EM):

Assumption about 

the population 

dynamics

OM1 EM1

OM2

OMn

EM2

EMn

Scenario 1:

… …

Compare                                                                  

estimated 

vs true (RE) 

…                   …

OM1 EM1

OM2

OMn

EM2

EMn

Scenario 2:

… …

Scenario k:

…

• Simulation-estimation process

• Different ‘realities’ can be simulated

• Used for different purposes:

• Movement

• Recruitment

• Natural mortality

• Data quantity and quality

• Somatic growth

Data



Spatial variability in somatic growth

Punt et al. (2015)

Ignore spatial variability in somatic growth: Include spatial variability in somatic growth:

R
e
la

ti
v
e
 e

rr
o
r 

in
 S

S
B

R
e
la

ti
v
e
 e

rr
o
r 

in
 S

S
B

Using parameters from pink ling (Genypterus blacodes) in Australia 

and a simulation experiment:

• Ignoring spatial structure: more biased estimates but precise

• Considering spatial structure (i.e., spatially explicit model): 

unbiased estimates



Temporal variability in somatic growth

Lee et al. (2018)

Using parameters from splitnose rockfish (Sebastes diploproa), they 

simulated temporal variability in somatic growth:

• Highly biased SSB estimates when EM was misspecified

R
e
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v
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 e

rr
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r

EM correctly

specified including

an environmental

index

EM misspecified



Temporal variability in somatic growth

Stawitz et al. (2019)

Using parameters petrale sole (Eopsetta

jordani) in the California Current, they 

simulated temporal variability in somatic 

growth (deviates and regime-like):

• Data poor vs data rich: data rich 

scenarios were more precise.

• Unbiased estimates when EM 

accounted for temporal variability



Objectives

Evaluate the consequences of misspecification in 

somatic growth in stock assessment models

• Spatial and temporal variability

• Three life-histories: sardine – cod – rockfish

What if the stock has a substantial spatial and 

temporal variability in somatic growth but we ignored 

them?

Simulation experiment using ss3sim (Anderson et al. 2014)

Sardine (Sardinops sagax)

Cod (Gadus macrocephalus)

Rockfish (Sebastes diploproa)



Somatic growth variability simulation

Changes in mean size-at-age

• Changes in 𝑘 or 𝐿∞

Temporal variability Mean size-at-age 

varies by:

• Year (year-specific)

• Cohort (cohort-specific)

Follows the PDO trend.

Spatial variability Mean size-at-age varies 

between two areas

Operating model (OM)

Feltrim and Ernst (2010)



Somatic growth variability simulation

Operating model (OM)

Slow growing Fast growing

‘Two-way trip’

Correa et al. (in prep)



Somatic growth variability simulation

Operating model (OM)

Simulated changes in mean size-at-age by varying the 𝑘 parameter (based on literature):

Correa et al. (in prep)



Somatic growth variability simulation

Operating model (OM)

Simulated changes in mean size-at-age by varying the 𝐿∞ parameter (based on literature):

Gertseva et al. (2010)



Somatic growth variability estimation
Estimation model (EM)

When OM simulates temporal variability, EM:

• Assumes 𝑘 and 𝐿∞ constant over time

• Includes an ‘observed’ environmental index (𝑒𝑛𝑣𝑜𝑏𝑠)

When OM simulates spatial variability, EM:

• Aggregated: Assumes 𝑘 and 𝐿∞ constant over space. 

Data generated by the OM is aggregated.

• Spatially explicit: Two-area model, 𝑘 and 𝐿∞ are 

estimated by area.

• Areas-as-fleet: Like aggregated approach, but data is not 

aggregated.



Somatic growth variability estimation
Estimation model (EM)

Data 

generated by 

OM

Area 1 

Data 

generated by 

OM

Area 2 

Aggregate

Data 

aggregated 

used in EM

Data 

generated by 

OM

Area 1 

Data 

generated by 

OM

Area 2 

Data 

generated by 

OM

Area 1 

Data 

generated by 

OM

Area 2 

Data used in 

EM

Data used in 

EM

Area 1 

Data used in 

EM

Area 2 

Aggregated approach Spatially explicit approach Areas-as-fleets approach

1 fishery

1 survey

1 fishery

1 survey

2 fisheries

2 surveys

1 fishery

1 survey

1 fishery

1 survey

1 fishery

1 survey

1 fishery

1 survey

1 fishery

1 survey

1 fishery

1 survey
1 fishery

1 survey



Results: Spatial variability

Correa et al. (in prep)

OM:

• Spatial variability in 

mean size-at-age by 

varying 𝒌 between 

areas

Slow growing area

Fast growing area



Results: Spatial variability

Correa et al. (in prep)

OM:

• Spatial variability in 

mean size-at-age by 

varying 𝒌 between 

areas

Areas-as-fleets

Slow growing area

Fast growing area



Results: Spatial variability

Correa et al. (in prep)

OM:

• Spatial variability in 

mean size-at-age by 

varying 𝑳∞ between 

areas

Slow growing area

Fast growing area



Results: Temporal variability

Correa et al. (in prep)

OM:

• Temporal variability 

(year-specific) in 

mean size-at-age by 

varying 𝒌 over time



Results: Temporal variability

Correa et al. (in prep)

OM:

• Temporal variability 

(year-specific) in 

mean size-at-age by 

varying 𝑳∞ over time



Results: Temporal variability

Correa et al. (in prep)

OM:

• Temporal variability 

(cohort-specific) in 

mean size-at-age by 

varying 𝒌 over time



Conclusions

• Spatial variability in somatic growth:

• Aggregated approach OK 

• Areas-as-fleet was the worst approach

• Spatially explicit reported unbiased estimates

• Temporal variability in somatic growth:

• Ignoring either year or cohort-specific variability 

produced biased SSB estimates 

• Including an environmental index produced 

unbiased SSB estimates

https://github.com/gmoroncorrea/spatiotemporal_growth



Caveats

• No movement assumed

• True values of parameters 

known

• Fishing mortality assumed 

equal for both areas (Spoiler: 

it worsened the aggregated 

and areas-as-fleets approach)

• Boundaries between slow and 

fast-growing areas known 

(Detection: Kapur et al. 2020)
Figure from Aaron Berger’s presentation



General conclusions

• Somatic growth is an important aspect of the 

population dynamics of a stock

• It contributes significantly to the variability in 

biomass in some cases

• Its variability affects the estimation of some 

data inputs used in stock assessment models

• Ignoring variability in somatic growth might 

lead to biased stock assessment outcomes
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