Giancarlo M. Correa1, Cole Monnahan2, Jane Sullivan3, James T. Thorson2, Andre E. Punt1
1University of Washington, Seattle, WA
2Alaska Fisheries Science Center, NOAA, Seattle, WA
3Alaska Fisheries Science Center, NOAA, Juneau, AK
Stock and Miller (2021)
Limitations:
In the population:
The mean length-at-age at the start of the year (y=1):
˜Ly,a=L∞+(L1−L∞)exp(−k(a−1))
a=1 is first age in WHAM. Then, when y>1:
˜Ly,a={L1,if a=1˜Ly−1,a−1+(˜Ly−1,a−1−L∞)(exp(−k)−1)otherwise
Then, to calculate the mean length-at-age at any fraction of the year:
Ly,a=˜Ly,a+(˜Ly,a−L∞)(exp(−kfy)−1) fy is the year fraction.
Also, Ly,a and variation of length-at-age ( σy,a ) are used to calculate the age-length transition matrix (Stock Synthesis - SS - approach):
φy,l,a={Φ(L′min−Ly,aσy,a)for l=1Φ(L′l+1−Ly,aσy,a)−Φ(L′l−Ly,aσy,a)for 1<l<nL1−Φ(L′max−Ly,aσy,a)for l=nL
Where Φ is standard normal cumulative density function, L′l is the lower limit of length bin l, L′min is the upper limit of the smallest length bin, L′max is the lower limit of the largest length bin, and nL is the largest length bin index.
Random effects on growth parameters can be predicted (notice log scale):
log(L∞t)=μL∞+δ1,t
log(kt)=μk+δ2,t
log(L1t)=μL1+δ3,t
t represents year or cohort effects and can be iid or AR1.
For this case, mean length-at-age ( μ˜La, notice log scale ) are assumed to be parameters and can be estimated. σy,a still needed.
Time variability can be modeled by predicting random effects:
log(˜Ly,a)=μ˜La+δy,a
δy,a can be iid or 2dAR1 (full variance-covariance matrix).
Optional when empirical weight-at-age not provided:
wl=Ω1lΩ2
Random effects on Ω1 and Ω2 can also be predicted.
Then:
ˆwy,a=∑lφy,l,awl
ˆwy,a can also be fitted to wy,a (observed mean weight-at-age)
Like the LAA random effects. Mean weight-at-age ( μ˜Wa, notice log scale ) are assumed to be parameters and can be estimated.
Time variability can be modeled by predicting random effects:
log(˜Wy,a)=μ˜Wa+δy,a
δy,a can be iid or 2dAR1 (full variance-covariance matrix).
Data:
Parameters (penalized ML for time-varying quantities):
ADMB model vs WHAM model
Observed survey fish lengths:
Mean SSB estimates:
SSB coefficient of variation:
Growth parameters (only for growth parametric approach):
Predicted mean length-at-age (Jan 1st) vs survey observations (∼ March 1st, not included in the model):
AIC values for models with same input data:
Model name | (Marginal) AIC | Δ AIC |
---|---|---|
LAA random effects (iid) | 827.9 | 0 |
vB equation (iidy) | 4047.2 | 3219.3 |
vB equation (iidc) | 4773.2 | 3945.3 |
WAA random effects (iid) | 1188.5 | 360.6 |
Cole Monnahan, Jane Sullivan, Jim Thorson, Andre Punt, Tim Miller, Jim Ianelli, Brian Stock
Contact:
gcorrea@uw.edu
giancarlo.correa@noaa.gov
Find more information:
tinyurl.com/wham-growth